Non-lnear Vibrathon Harvesting

Helios Vocca

NiP$S Laboratory, Dipartimento di Fisica
Universita degli Studi di Perugia, Italy

Www.nanopwr.eu

WWW.zero-power.eu
N l P S Laboratory |
”"y,.‘m{}ré\“‘ f\s“"il"m _ /’\
Noise in Physical Systems . WIS I;P@WER
N

www.wisepower.it



Energy harvesting in Erice:

Erice is the right place where speaking about energy
at least according with one legend:

Here took place a famous fight challenge between
Eryx (or Erice, a demigod son of the goddess
Aphrodite, king of the ancient town in the 13t
century BC, a famous and strong boxer) and his
friend Heracles (or Hercules, son of Zeus) a divine
hero, the greatest of the Greek heroes.

Eryx put us as a prize his reign and Heracles the
cows of the monstrous Gerion.

Heracles won killing Eryx and Erice became a
Heraclean town. This is why Erice became later a
greek colony.

So Erice has a strong connection with the symbol of
men’s energy (almost a linear system...)




Energy harvesting in Erice:

Moreover in Erice there was an important
Aphrodite temple (because Eryx was her
son), and another legend tells that Aeneas
during his trip to found Rome arrived in
Trapani where his father Anchises died.

Aeneas (son of Anchises and Aphrodite)
decided to bury his father in Erice, close to
her temple.

(r—[{ 4? 3 .\ S - \k_
' /, o
Corsica i n
“ ! Thrace —~1C
~ e
wllh ey 4~
/; %Sardinia ¢t : 4 oy
:'i l‘ Tyrrhenian Sea c_' /‘:; S) Asia
°o(‘. SN < Minor

Mediterranean Sea

Aphrodite represents love and all
about beauty and feminine vital
energies.

So Erice has even a strong connection
with the symbol of women energy (a
strongly non-linear system...)



Vibration energy harvesting

Four main transduction mechanisms

Capacitive: geometrical variations Piezoelectric: dynamical strain is
induce voltage difference converted into voltage difference.
Inductive: dynamical oscillations Magnetostrictive: stress produces a
of magnets induce electric current in variable magnetic field that induces a
coils current in an adjacent conductive coil.
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Vibrations harvesting: the model

Energy transd. ::iﬁ d U ( -x )

k mx = — —yx —c(x,V) +C
—‘lx dx

Energy stored

Energy dissipated

Vibrating bod IZ Force due to the energ stth%tufon force due to ut f
'SS'pt% Vteransdeuctlon mech Pn morce

Equations that link the vibration-induced displacement with the Voltage



Vibrations harvesting: the transduction mechanism

We will focus on Piezoelectricity because for practical
reasons has the best coupling factor.

Capacitive: is more easy to scale
down but you have to pay a debt: it
needs a bias voltage

Inductive and Magnetostrictive:
are more difficult to be scaled down
and have a lower coupling factor

20 pm

EHT = 15.00 kV WD = 7.0 mm Mag= 533X Signal A = SE2




Vibrations harvesting: the model for piezo

R . dU X at for a beam are:
mx = — ( )_y-x KM"‘)&C That f b .
d Keﬁd31a
v 2t k,
V=KGxVy—V LT
g ‘L’p ‘ ag,

The Physics of piezo materials

Now we focus on CZ

Oscillating mass m

Piezoelectric beam

Vibrating wall



The random character of kinetic energy

(:Z Represents the vibrational stochastic force

Random vibrations / noise

Thermal noise (NOT POSSIBLE AT EQUILIBRIUM!!!)
Acoustic noise

Seismic noise

Ambient noise (wind, pressure fluctuations, ...)

Man made vibrations (human motion, machine vibrations,...)

All different for intensity, spectrum, statistics

How can we harvest them ?




Linear system
If a linear system is considered: U(x) = x?
1) There exist a simple math theory to solve the equations

2) They have a resonant behaviour (resonance frequency)
3) They can be “easily” realized with cantilevers and pendula




Linear system

X(s) i.e. ambient energy H(s) Y(s) i.e. output energy

Transfer Function

»>
input signal

>
output response

Linzar oscillator
The transfer function is a math function of the frequency, in the complex
domain, that can be used to represent the performance of a linear system and

can act as a filter...
Y(s) = H(s) X(s)

For a linear system the transfer function presents one or more peeks
corresponding to the resonace frequencies.

A linear system is the most performing if its resonance frequency is where the
incoming energy is abundant...

This is a serious limitation when you want to build a small energy harvesting
system working in a real environment...



For two main reasons:

The frequency spectrum of available vibrations instead of being
sharply peaked at some frequency is usually very broad.
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The frequency spectrum of available vibrations is particularly rich
in energy in the low frequency part... and it is very difficult, if not
impossible, to build small low-frequency resonant systems...

Resonant frequency ~ [s7!]

* MEMS cantilever 100 x 3 x 0.1 ym3, f,=12 kHz
* NEMS cantilever 0.1 x 0.01 x 0.01 ym?3, f,=1.2 GHz
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From the model for a linear oscillator:

The voltage transfer function is:
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The analytic result for the Q

0=-—- w, is the resonance frequency and Aw is the bandwidth (full
Aw width when the output voltage is Vmaxw/_ )
2
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Description of the resonator design

The resonator design is a square shaped block of single crystal silicon with
dimensions of 320x320x28 um”3 (design H1). Its main resonance mode is the so
called square extensional (SE) resonance, which is characterized by its zoom-
in/zoom-out oscillation. The resonance is excited by a piezoelectric AIN thin film on
top of the resonator block. The electrically conductive (p-doped) silicon block acts as
the bottom electrode, and a molybdenum thin film has been patterned to provide the
top electrode. See reference [1] for a general description of the SE resonator.
Reference [2] discusses piezoelectric excitation of the SE resonance mode.

Figure 3 shows how the resonator is recommended to be connected.
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Figure 3: Electrical connection of the resonator.
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The measurements

Resonators design

Four separate chips have been provided, each chip contains 16 resonators.

Each of the 16 resonators has a different design, their size is varied (so the
resonance frequency)

resonator lateral size (um)

11 287 263 239,

314 290 266 242
317 293 269 245
320 296 272| 248

main mode frquency (MH2)
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Electrical parameters (chip 2)

Capacity (pF)

26.52+0.07 24.00+0.06 21.26+0.05 18.7310.05

29.4610.06 25.84+0.06 21.8310.05 21.26+0.05

27.62+0.06 24.48+0.06 21.83+0.05 19.45+0.05

30.40+0.08 26.70+0.07 23.360.06 19.57+0.05

T, (Us) Resistance (MQ2)
22218 21945 22016 21416 8.4t0.4 | 9.1+0.3 | 10.3+0.3 | 11.5+0.4
216+4 22049 2157 21315 7.310.1 | 8.5£0.4 | 9.8+0.3 | 10.0+0.3
21415 2177 21515 22013 :> 7.810.2 | 8.910.3 | 9.9+0.2 | 11.31+0.2
22515 n.a. 20943 | 21743 7.410.2 n.a. 8.910.2 | 11.1+0.2

~

Why?




The membrane was broken with an
excitation of 4 volts at the resonance
frequency




Mechanical parameters

T, (5)
16518 99+4 1187 149+19
279124 7314 144+5 125+11
1374 11343 15019 158%16
20417 n.a. 1468 158+10
Quality factors (declared 9000)
7200+350 47004200 6080+360 83001000
12000+1000 3400+160 7300%£260 69501600
5860160 5250+150 75801480 8700860
8700£300 n.a. 7300+380 8600560
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Capable of harvesting energy on a broad-band
No need for frequency tuning
Capable of harvesting energy at low frequency
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The vibration harvester 2.0

............ > Non-resonant system
“Transfer function” with wide frequency resp.
............ > Low frequency operated
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Nonlinear Energy Harvesting

F. Cottone,* H. Vocca, and L. Gammaitoni’

NiPS Laboratory, Dipartimento di Fisica, Universitd di Perugia, and Instituto Nazionale di Fisica Nucleare,
Sezione di Perugia, I-06100 Perugia, Italy
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Ambient energy harvesting has been in recent years the recurring object of a number of research efforts
aimed at providing an autonomous solution to the powering of small-scale electronic mobile devices.
Among the different solutions, vibration energy harvesting has played a major role due to the almost
universal presence of mechanical vibrations. Here we propose a new method based on the exploitation of
the dynamical features of stochastic nonlinear oscillators. Such a method is shown to outperform standard
linear oscillators and to overcome some of the most severe limitations of present approaches. We
demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting
from ambient vibration.

DOI: 10.1103/PhysRevLett.102.080601 PACS numbers: 05.40.Ca, 05.10.Ln, 05.45.—a, 84.60.—h

Result: output power is maximum for an
optimal nonlinear regime
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Let's look at an example of
non-linear oscillator:

the Duffing Oscillator

X +0x + Bx + ax’ = ycoswt

1 1
U(x)=—px"+—ax"



>0, a>0

The Duffing Potential

1 1
U(x)=—px" +—ax"
(x) =3 "+

>0, a<0

<0, a<0




A two springs system

« A mass is held between two
springs.
— Spring constant k
— Natural length /

« Springs are on a horizontal
surface.

— Frictionless
— No gravity




Transverse Displacement

» The force for a displacement
is due to both springs.

— Only transverse component
— Looks like its harmonic

Fe -2k(\/12 PR l)sine

_ —2k(\/lz 2 _ z) X
T NI+ x°

1
N1+ x%/ 1

- —2kx(1 -



Purely Nonlinear

The force can be expanded as
a power series near

equilibrium. P =_2li1€[1_ 1 J

— Expand in x// N1+ X7/

The lowest order term is non- o\
s—kl(—) + ..

linear.

Quartic potential
— Not just a perturbation k



Mixed Potential

 Typical springs are not at
natural length.

— Approximation includes a
linear term




Quartic Potentials

* The sign of the forces influence the shape
of the potential.

double well




Driven System

Assume a more complete,
realistic system.

— Damping term
— Driving force

Rescale the problem:
— Set t such that w,? = kim = 1
— Set x such that ka/m =1

This is the Duffing equation

mx = —Px — kx —kox” + f coswt

. ; 2 2.3
X+yx+wyx+awyx” = fcoswt

¥+yt+x+x = fcoswt



Steady State Solution

* Try a solution, match terms
x(t) = A(w)cos[wt — O(w)]

¥+yt+x+x = fcoswt

A(l - w”)cos(wt —0) — Ayw sin(wt — 0) + A’ cos’ (wt — 0) = f coswt

trigonometric cos’ (wt — @) = 3 cos(awt — ) + § cos 3(wt - 6)

identities fcosat = f cos@cos(axt—6)— fsinfsimn(wrt —60)
[A(l-w? +2 A%) - fcoswt]cos(wt - 0) fcoswt = A(1 - w> + %Az)
+-Ayw + f sinwt]sin(wt — O) fsinwt = Ayw
+5 A’ cos3(wt - 6) L A% cos3(wt — 0) =0

=0



Amplitude Dependence

Find_the a_mplitude-frequency ficos’wt=A*(1-w* +2A%)
relationship. Frsin?or = A 0?
— Reduces to forced harmonic . s 3 a2 o
oscillator for A — 0 [T=ATl-0"+7A") +y 0]
f

A =
=0 + (yw)]

Find t_he case fo_r _mlnlmal 0= AY[(1 - +3 A*)? +0]
damping and driving force.
— f, yboth near zero
— Defines resonance condition A(w) = \/% (w* =1)

O=1-w’+3A°




Nonlinear Resonance Frequency

« The resonance frequency of
a linear oscillator is
independent of amplitude.

Linear
oscillator

« The resonance frequency of
a Duffing oscillator increases
with amplitude.
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A Duffing oscillator behaves
differently for increasing and
decreasing frequencies.

— Increasing frequency has a
jump in amplitude at w,

— Decreasing frequency has a
jump in amplitude at w,

This is hysteresis.



Nonlinear Resonance

(in general...)

Nonlinear resonance seems not to be so much different
from the (linear) resonance of a harmonic oscillator. But
both, the dependency of the eigenfrequency of a nonlinear
oscillator on the amplitude and the nonharmoniticity of the
oscillation lead to a behavior that is impossible in harmonic
oscillators, namely: the foldover effect and superharmonic
resonance.

Both effects are especially important in the case of weak
damping.



The foldover effect

The foldover effect got its name from the bending of the resonance peak
in @ amplitude versus frequency plot. This bending is due to the
frequency-amplitude relation which is typical for nonlinear oscillators.

Foldover effect for a pendulum
g=9.81m/sec2,l=1m,y=0.4sec-1 /

140 et . The pendulum eq.:
@O i e i
QP T
o 120 N i _ : 2 .
= N Q=-Yp—-w,sIn@+ f coswt
T 100 R
h S i N ! <
G) »
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T g0 [ ol
€ =
ég ‘*() | £ 7 t:;:
k= g 3
R e o
E Q ——r——t——r—t—————t————— ————————

030 035 040 045 050 055 0.80 I
frequency (Hz) | e

100 150

Amplitude (deg)



The superharmonic resonance

Nonlinear oscillators do not oscillate sinusoidal.

Superharmonic resonance is simply the resonance with one of this higher
harmonics of a nonlinear oscillation. In an amplitude/frequency plot appear
additional resonance peaks. In general, they appear at driving frequencies
which are integer fractions of the fundamental frequency.

g =981m/sec’,l =1m,y =0.1sec”

90 4————
@80 1A=0.6m \
6' ] {3.=0.4-5 m "-'\\ i
£70 R=U5m 3 .
~~’60 AEOISTT
L] l Z i
8‘40 1w ] N -
© W
£ 30 ! —_— —
S Nt
£ 20— \-==—
A 10 ‘;9
£ o] |
0 ] T T T T ] T T T T T ] T
0.13 0.14 0.15 0.16 0.17

freguency (Hz)‘



Bistable Duffing

In case of a bistable oscillator the frequency response for an overdamped system
is highly spread in the low frequency region.

100 v T
10 3vQ
S(v) Sv,
1
0.1
10 100
v (Hz)

Gammaitoni et al. Reviews of Modern Physics 1998



Noise energy harvesting

NON-Linear mechanical oscillators

Ay NON-Linear Inverted pendulum
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Noise energy harvesting

NON-Linear mechanical oscillators

. , Piezo beam [
micrometric stage xy o cemersaim
layers e,
.w}{ Gea [
.- polar opposing magnets
Al Rl
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X
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Noise energy harvesting

NON-Linear mechanical oscillators

o
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o
o
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o
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http://www.nipslab.org/node/1676

Nonlinear Energy Harvesting, F. Cottone; H. Vocca; L. Gammaitoni
Physical Review Letters, 102, 080601 (2009)



Noise energy harvesting

NON-Linear mechanical oscillators

Nonlinear Energy Harvesting, F. Cottone; H. Vocca; L. Gammaitoni
Physical Review Letters, 102, 080601 (2009)
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Noise energy harvesting

NON-Linear mechanical oscillators
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Nonlinear Energy Harvesting, F. Cottone; H. Vocca; L. Gammaitoni , Physical Review Letters, 102, 080601 (2009)



Noise energy harvesting

Non-linear systems

Duffing potential

0.28
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b 07", 08 -06-04020 >

a
L. Gammaitoni, |. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)



Noise energy harvesting

Non-linear systems

U(X) = —laxz + lbx4 Duffing potential
2 4

2
a

- .
—
o

- N W A 1 ® N 0 @

b =
" 4D log(t,)

041 -

2

L. Gammaitoni, |. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)
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Barton D.A.W., Burrow S.G. and Clare L.R., 2010, “Energy Harvesting from Vibrations
with a Nonlinear Oscillator,” Journal of Vibration and Acoustics, 132, 021009.
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The buckled beam
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The buckled beam
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where k, and k; are the linear and non-linear stiffness, k, is the piezoelectric coupling
factor and k, is the in-plane piezoelectric force factor.

The conservative force is Duffing-like:
U(x)=tkx* +1(k, +kV)x?

where the linear stiffness parameter is a function of the output voltage



Considering a Duffing oscillator:

X425, %+ x+fx’ =F(1)

Noise energy harvesting

Only bistability???

Eeﬁ is the effective damping ratio for both electrical and mechanical damping

[5 > () is astiffness nonlinearity coefficient
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M.F. Daqgaq, Journal of Sound and Vibration 329 (2010) 3621-3631



Noise energy harvesting

Only bistability???

A more general monostable potential..  [J(x) = ax”" with a>0
n=12,...

In an exponentially correlated noise
with correlation time 7t:

|t-1,|

(E(DE1))=0% *

There exists a threshold amplitude a,,:

Above which the nonlinear system
outperforms the linear one.

L. Gammaitoni, |. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)
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Varying the noise amplitude
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Once o and a are fixed the choice of a
linear (n = 1) or nonlinear potential (n >
2) can be made in order to maximize
X, and consequently the power

obtained at the device output.

1 2 3 4 5 6 7 8 9 10

L. Gammaitoni | Neri and H Vocca, Chem. Phys. (2010), doi:10.1016/j.chemphys.2010.08.012



In collaboration with
CEA-Leti we are
investigating
ucantilevers
dynamics
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Scheme of the cross section of one cantilever

Top 0.05um

PZT 0.12 um
Bottom 0.1um

Typical electrical features
* Max voltage sustainable: 5-7V

e e31PZT =-5C/m?
 Dielectric constant PZT: 1000



Nonlinear membranes, beams and ... from
VTT - Helsinki (Fi)




Nonlinear membranes and beams from
VTT

Cross section of a membrane harvester shown schematically.

Cross section of a beam device supported from only side.
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Statistics for linear systems

e “1D” Statistics: (2 order cumulants, 1t Order Spectra)

— Correlation:  C.,0)=[ x@yt+1)dr < X(f)Y (f)=5,(f)

— Power Spectral Density:  ¢,.() < X(f) X'(f)=5,.(f)

S.,(f)
V5. (f) 8, (f)

— Coherence: C.(f)=

* Tells us power and phase coherence at a given
frequency



Statistics for non-linear systems

e “2D” Statistics: (3rd Order Cumulants, 2nd Order Spectra)

— Bicumulant:

C,,.(t.1') =f:x(r)y(t+r)z(z' +7)dt < X(£)Y(£)Z(fi+ £)=S..(f.5)

— Bispectral Density: C.(t) = X(£)X(L) X (£ +14)=S.(f.1)

S3x(f1>f2)= ffc3x<m,n)ezm(flm+f2")den
— Bicoherence: c (/) S..(f..1:)

VS (S, (o) S+ 1)

* Tells us power and phase coherence at a coupled
frequency



Statistics for non-linear systems

The Spectrogram (STFT square modulus):

2

S.(tv) =|[ x(@h'(x - e ™" dv

Represents the signal energy in the time-frequency domain centred in (t,v).

eTo analize the system linearity bispectrum and bicoherence need to be taken into
account:

If S;,=0 the processis Gaussian and linear
oIf S;,= 0 the process is not Gaussian and

eif ¢, is constant - the process is linear
eif ¢, is not constant - the process is not linear
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bispectrum (bispeci) signal when no integrators, tgps=691970430 +100s

Bispectrum

Low frequency noise coupled at
higher frequencies

bicoherence (bicoher) signal when no integrators, tgps= 691970430+100s
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Spectrogram:

12 Jul 2002 15:58:54
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Conclusions

Non resonant (i.e. non-linear) mechanical oscillators can outperform resonant
(i.e. linear) ones

Non-linear systems are more difficult to treat but more interesting...
Bistability is not the only nonlinearity available...
The same principles are also valid for capacitive and inductive harvesters

A great amount of work has still to be done... good for us!!!



